
Using the uM-FPU64
Matrix Instructions

Release 407

Introduction
The uM-FPU64 chip provides a number of instructions for operating on matrices and vectors. Matrices are defined
as a group of sequential FPU registers organized by rows and columns. For example, the following diagram shows a
matrix of 2 rows and 4 columns.

0, 0 0, 1 0, 2

1, 0 1,1 1, 2

0, 3

1, 3

Row

0

Row

1

Col

0

Col

1

Col

2

Col

3

Matrices are stored in sequential 32-bit floating point registers, or in RAM in row major order. The following list
shows the storage locations for a matrix of 2 rows and 4 columns starting at register 16.

Register 16 row 0, column 0
Register 17 row 0, column 1
Register 18 row 0, column 2
Register 19 row 0, column 3
Register 20 row 1, column 0
Register 21 row 1, column 1
Register 22 row 1, column 2
Register 23 row 1, column 3

Instruction Summary
The FPU has several special purpose instructions for working with matrices and vectors.

SELECTMA Select matrix A
SELECTMB Select matrix B
SELECTMC Select matrix C
LOADMA Load register 0 with value from matrix A
LOADMB Load register 0 with value from matrix B
LOADMC Load register 0 with value from matrix C
SAVEMA Save register 0 value to matrix A
SAVEMB Save register 0 value to matrix B
SAVEMC Save register 0 value to matrix C
MOP Matrix Operations

Since matrices and vectors are stored in FPU registers, any FPU instructions that reference registers can also be used
to access values in a matrix or vector. Register X can be used for sequential access.

Micromega Corporation 1 Revised 2013-10-01

Micromega Corporation 2 Using the uM-FPU64 Matrix Instructions

Matrix Operations

Matrix operations can involve one, two or three matrices which are referred to as MA, MB and MC. The
SELECTMA, SELECTMB and SELECTMC instructions are used to select the registers that define a matrix. The
starting register, the number of rows, and the number of columns are specified following the opcode. For example,
the following instruction selects MB as a matrix with 2 rows and 4 columns starting at register 16.

SELECTMB,16,2,4

Register X is also set to the first register of the matrix by the SELECTMA, SELECTMB, and SELECTMC instructions.
This makes it easy to use any of the register X instructions to quickly access the sequential registers in the matrix
(e.g. READX, WRITEX, XSAVE, LOADX, etc.). The elements in a matrix can be accessed directly by using the
specific register address for each element, or they can be accessed by row and column number using the LOADMA,
LOADMB, LOADMC, SAVEMA, SAVEMB and SAVEMC instructions.

The LOADMA, LOADMB and LOADMC instructions load register 0 with the value from a selected element in the
matrix. The following instruction loads register 0 with the value in row 1, column 2 of matrix MB (row and columns
numbers start at 0).

LOADMB,1,2

The SAVEMA, SAVEMB and SAVEMC instructions store the value in register 0 to the selected element in the matrix.
The following instruction saves the value in register 0 to row 1, column 2 of matrix MB.

SAVEMB,1,2

MOP instruction
The MOP (matrix operation) instruction performs all the matrix operations.

Scalar Operations
A scalar operation takes the single value in register 0 and applies it to each element of the matrix MA. For example,
the Scalar Add operation using two 2x2 matrices, will perform the following:

MA[0, 0] = MA[0, 0] + reg[0]
MA[0, 1] = MA[0, 1] + reg[0]
MA[1, 0] = MA[1, 0] + reg[0]
MA[1, 1] = MA[1, 1] + reg[0]

Operation Instruction Description
Scalar Set MOP, SCALAR_SET MA[row, col] = reg[0]
Scalar Add MOP, SCALAR_ADD MA[row, col] = MA[row, col] + reg[0]
Scalar Subtract MOP, SCALAR_SUB MA[row, col] = MA[row, col] - reg[0]
Scalar Subtract (reverse) MOP, SCALAR_SUBR MA[row, col] = reg[0] - MA[r,c]
Scalar Multiply MOP, SCALAR_MUL MA[r,c] = MA[row, col] * reg[0]
Scalar Divide MOP, SCALAR_DIV MA[row, col] = MA[row, col] / reg[0]
Scalar Divide (reverse) MOP, SCALAR_DIVR MA[row, col] = reg[0] / MA[r,c]
Scalar Power MOP, SCALAR_POW MA[r,c] = MA[row, col] ** reg[0]

Element-wise Operations
An Element-wise operation performs each operation on corresponding elements of matrix MA and MB. For
example, the Element-wise Add operation using two 2x2 matrices, will perform the following:

MA[0, 0] = MA[0, 0] + MB[0, 0]
MA[0, 1] = MA[0, 1] + MB[0, 1]

Micromega Corporation 3 Using the uM-FPU64 Matrix Instructions

MA[1, 0] = MA[1, 0] + MB[1, 0]
MA[1, 1] = MA[1, 1] + MB[1, 1]

Operation Instruction Description
Element-wise Set MOP, EWISE_SET MA[row, col] = MB[row, col]
Element-wise Add MOP, EWISE_ADD MA[row, col] = MA[row, col] + MB[row, col]
Element-wise Subtract MOP, EWISE_SUB MA[row, col] = MA[row, col] - MB[row, col]
Element-wise Subtract (reverse) MOP, EWISE_SUBR MA[row, col] = MB[row, col] - MA[row, col]
Element-wise Multiply MOP, EWISE_MUL MA[row, col] = MA[row, col] * MB[row, col]
Element-wise Divide MOP, EWISE_DIV MA[row, col] = MA[row, col] / MB[row, col]
Element-wise Divide (reverse) MOP, EWISE_DIVR MA[r,c] = MB[row, col] / MA[r,c]
Element-wise Power MOP, EWISE_POW MA[row, col] = MA[row, col] ** MB[row, col]

Matrix Multiplication
The matrix multiplication performs a matrix multiply of MB times MC and stores the result in MA. The number of
columns in MB must be the same as the number of rows in MC, or the multiply will not be done. The size of matrix
MA will be updated to reflect the rows and columns of the resulting matrix.

0, 0 0, 1 0, 2

0, 0 0, 1 0, 2

1, 0 1,1 1, 2

0, 0

1, 0

•

MB MC MA

Operation Instruction Description
Matrix Multiply MOP, MULTIPLY Calculate: MA = MB * MC

Identity and Diagonal Matrix
The identity operation stores the value 1.0 in all elements of matrix MA where the row and column numbers are the
same, and stores 0.0 in all other elements. The following diagram shows 3x3 identity matrix:

1.0 0.0 0.0

0.0 1.0 0.0

Row

0

Row

1

Col

0

Col

1

Col

2

0.0 0.0 1.0
Row

2

The diagonal operation stores the value contained in register 0 in all elements of matrix MA where the row and
column numbers are the same, and stores 0.0 in all other elements.

Operation Instruction Description
Identity matrix MOP, IDENTITY MA = identity matrix
Diagonal matrix MOP, DIAGONAL MA = diagonal matrix

Micromega Corporation 4 Using the uM-FPU64 Matrix Instructions

Transpose
The transpose operation turns rows into columns and columns into rows. The following diagram shows the transpose
of a 2x3 array to a 3x2 array. The size of matrix MA will be updated to reflect the rows and columns of the resulting
matrix.

Operation Instruction Description
Transpose MOP, TRANSPOSE MA = transpose matrix

MA

0, 0 0, 1

1, 0 1,1

2, 0 2,1

0, 0 0, 1 0, 2

1, 0 1,1 1, 2

MB

Statistics
The statistical operations provide a fast way of calculating values for a group of registers. The following example
calculates the average value of registers 16 to 31.

SELECTMA,16,16,1 select MA as a 16x1 vector starting at register 16
MOP, AVE calculate average value of elements in MA

Operation Instruction Description
Count MOP, COUNT reg[0] = count of all elements in MA
Sum MOP, SUM reg[0] = sum of all elements in MA
Average MOP, AVE reg[0] = average of all elements in MA
Minimum MOP, MIN reg[0] = minimum of all elements in MA
Maximum MOP, MAX reg[0] = maximum of all elements in MA

Matrix copy
The copy operations provide a convenient way to copy the contents of one matrix to another. The size of the
destination matrix will be updated to reflect the rows and columns of the resulting matrix. If there is not sufficient
space at the destination, the copy will not be done.

Operation Instruction Description
Copy Matrix A to Matrix B MOP, COPY_AB Matrix B is set to a copy of matrix A.
Copy Matrix A to Matrix C MOP, COPY_AC Matrix C is set to a copy of matrix A.
Copy Matrix B to Matrix A MOP, COPY_BA Matrix A is set to a copy of matrix B.
Copy Matrix B to Matrix C MOP, COPY_BC Matrix C is set to a copy of matrix B.
Copy Matrix C to Matrix A MOP, COPY_CA Matrix A is set to a copy of matrix C.
Copy Matrix C to Matrix B MOP, COPY_CB Matrix B is set to a copy of matrix C.

Matrix Determinant
The determinant operation is only valid for 2x2 and 3x3 matrices. It returns the determinant in register 0. To

Micromega Corporation 5 Using the uM-FPU64 Matrix Instructions

calculate the determinant of larger matrices use the LU decomposition or Cholesky decomposition matrix
operations.

Instruction Description
MOP, DETERM reg[0] = determinant of MA

Matrix Inverse
The inverse operation is only valid for 2x2 and 3x3 matrices. Matrix MA is set to the inverse of matrix MB. To
calculate the inverse of larger matrices use the LU decomposition or Cholesky decomposition matrix operations.

Instruction Description
MOP, INVERSE MA = inverse of MA

Load Registers to Matrix
The load register to matrix instructions can be used to quickly load a matrix by copying register values to a matrix.
The byte immediately following the matrix operation specifies the number of index values to follow. An index value
is a signed 8-bit integer specifying one of the registers from 0 to 127. If the index is positive, the value of the
indexed register is copied to the matrix. If the index is negative, the absolute value is used as an index, and the
negative value of the indexed register is copied to the matrix. Register 0 is cleared to zero before the register values
are copied, so index 0 will always store a zero value in the matrix. The values are stored sequentially, beginning with
the first register in the destination matrix.

Instruction Description
MOP, LOAD_RA, byteCount, byte, ... Load matrix A from registers.
MOP, LOAD_RB, byteCount, byte, ... Load matrix B from registers.
MOP, LOAD_RC, byteCount, byte, ... Load matrix C from registers.

Example:
Suppose you wanted to create a 2-dimensional rotation matrix as follows:

cos

A

-sin

A

sin

A

cos

A

Assuming register 1 contains the value sin A, and register 2 contains the value cos A, the following instructions
create the matrix.

SELECTMA,10,2,2 select MA as a 2x2 matrix starting at register 10
MOP,LOAD_RA,4,2,-1,1,2 create the rotation matrix

Load Matrix to Matrix
The load matrix to matrix instructions can be used to quickly copy values from one matrix to another. The byte
immediately following the matrix operation specifies the number of index values to follow. An index value is a
signed 8-bit integer specifying the offset of the desired matrix element from the start of the matrix. If the index is
positive, the matrix element is copied to matrix MA. If the index is negative, the absolute value is used as an index,
and the negative value of the matrix element is copied to the destination matrix. Register 0 is cleared to zero before
the register values are copied, so index 0 will always store a zero value in matrix MA. The values are stored
sequentially, beginning with the first register in matrix MA.

Micromega Corporation 6 Using the uM-FPU64 Matrix Instructions

Instruction Description
MOP, LOAD_BA, byteCount, byte, ... Load matrix A from matrix B.
MOP, LOAD_CA, byteCount, byte, ... Load matrix A from matrix C.

Example:
Suppose MB is a 3x3 array and you want to create a 2x2 array from the upper left corner as follows:

a b c

d e f

g h i

a b

d e

MB
MA

SELECTMB,20,2,2 select MB as a 2x2 matrix starting at register 20
MOP,LOAD_BA,4,0,1,3,4 copy the 2x2 subset from MA

Save Matrix A to Register
The save matrix to register instructions can be used to quickly extract values from a matrix. The byte immediately
following the matrix operation specifies the number of index values to follow. An index value is a signed 8-bit
integer specifying one of the registers from 0 to 127. The values are stored sequentially, beginning with the first
element in matrix MA. If the index is positive, the matrix value is copied to the indexed register. If the index is
negative, the matrix value is not copied.

Instruction Description
MOP, SAVE_AR, byteCount, byte, ... Save matrix A values to specified registers

Example:
Suppose matrix MA is a 3x3 matrix containing the following values:

a b c

d e f

g h i

MA

The following instruction stores the value a to register 10, e to register 11 and i to register 12.

MOP,SAVE_AR,9,10,-1,-1,-1,11,-1,-1,-1,12 save matrix A values to registers

Save Matrix to Matrix
The save matrix to matrix instructions can be used to quickly extract values from a matrix. The byte immediately

Micromega Corporation 7 Using the uM-FPU64 Matrix Instructions

following the matrix operation specifies the number of index values to follow. An index value is a signed 8-bit
integer specifying the offset of the desired matrix element from the start of matrix MA. The values are stored
sequentially in the destination matrix, beginning with the first element in matrix MA. If the index is positive, the
matrix value is copied to the destination matrix. If the index is negative, the matrix value is not copied.

Instruction Description
MOP, SAVE_AB, byteCount, byte, ... Save matrix A values to matrix B
MOP, SAVE_AC, byteCount, byte, ... Save matrix A values to matrix C

LU and Cholesky Decomposition
The LU and Cholesky decomposition operations can be used to calculate a matrix inverse, matrix determinant, and
to solve sets of linear equations for n x n matrices of any size. The maximum size of matrix will be limited by the
available registers or RAM for storing the matrices. An augmented matrix is created by the MOP,LU_DECOMP and
MOP,CH_DECOMP instructions. When allocating matrix storage for matrix C prior to using these instructions, this
additional space must be taken into account.

Micromega Corporation 8 Using the uM-FPU64 Matrix Instructions

0, 0 0, 1 0, 2

1, 0 1, 1 1, 2

2, 0 2, 1 2, 2

3, 0 3, 1 3, 2

4, 0 4, 1 4, 2

0, 3

1, 3

2, 3

3, 3

4, 3

0, 4

1, 4

2, 4

3, 4

4, 4

0, 0 0, 1 0, 2

1, 0 1, 1 1, 2

2, 0 2, 1 2, 2

3, 0 3, 1 3, 2

4, 0 4, 1 4, 2

0, 3

1, 3

2, 3

3, 3

4, 3

0, 4

1, 4

2, 4

3, 4

4, 4

5, 0 5, 1 5, 2

6, 0 6, 1 6, 2

5, 3

6, 3

5, 4

6, 4

Original n x n matrix

Augmented n+2 x n matrix

Input vector stored in row n for
LU_SOLVE and CH_SOLVE

Solution vector returned in row n
for LU_SOLVE and CH_SOLVE

CH_INVERSE stores
result in n x n elements

Examples: SELECTMC, 10, 5, 5 Select Matrix C
fill matrix with data

MOP, CH_DECOMP Calculate Cholesky Inverse Matrix
MOP, CH_INVERSE

Further Information
See the Micromega website (http://www.micromegacorp.com) for additional information regarding the uM-FPU64
floating point coprocessor, including:

uM-FPU64Datasheet
uM-FPU64 Instruction Set

Micromega Corporation 9 Using the uM-FPU64 Matrix Instructions

	
	Introduction
	Instruction Summary
	Matrix Operations
	MOP instruction
	Scalar Operations
	Element-wise Operations
	Matrix Multiplication
	Identity and Diagonal Matrix
	Transpose
	Statistics
	Matrix copy
	Matrix Determinant
	Matrix Inverse
	Load Registers to Matrix
	Load Matrix to Matrix
	Save Matrix A to Register
	Save Matrix to Matrix
	LU and Cholesky Decomposition

	Further Information

